首页> 外文OA文献 >Polynomial Chaos Expansion of Random Coefficients and the Solution of Stochastic Partial Differential Equations in the Tensor Train Format
【2h】

Polynomial Chaos Expansion of Random Coefficients and the Solution of Stochastic Partial Differential Equations in the Tensor Train Format

机译:张量列格式的随机系数的多项式混沌展开和随机偏微分方程的解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We apply the tensor train (TT) decomposition to construct the tensor product polynomial chaos expansion (PCE) of a random field, to solve the stochastic elliptic diffusion PDE with the stochastic Galerkin discretization, and to compute some quantities of interest (mean, variance, and exceedance probabilities). We assume that the random diffusion coefficient is given as a smooth transformation of a Gaussian random field. In this case, the PCE is delivered by a complicated formula, which lacks an analytic TT representation. To construct its TT approximation numerically, we develop the new block TT cross algorithm, a method that computes the whole TT decomposition from a few evaluations of the PCE formula. The new method is conceptually similar to the adaptive cross approximation in the TT format but is more efficient when several tensors must be stored in the same TT representation, which is the case for the PCE. In addition, we demonstrate how to assemble the stochastic Galerkin matrix and to compute the solution of the elliptic equation and its postprocessing, staying in the TT format. We compare our technique with the traditional sparse polynomial chaos and the Monte Carlo approaches. In the tensor product polynomial chaos, the polynomial degree is bounded for each random variable independently. This provides higher accuracy than the sparse polynomial set or the Monte Carlo method, but the cardinality of the tensor product set grows exponentially with the number of random variables. However, when the PCE coefficients are implicitly approximated in the TT format, the computations with the full tensor product polynomial set become possible. In the numerical experiments, we confirm that the new methodology is competitive in a wide range of parameters, especially where high accuracy and high polynomial degrees are required.
机译:我们应用张量训练(TT)分解来构建随机场的张量积多项式混沌扩展(PCE),以随机的Galerkin离散化求解随机的椭圆扩散PDE,并计算一些感兴趣的量(均值,方差,和超出概率)。我们假设随机扩散系数作为高斯随机场的平滑变换给出。在这种情况下,PCE是通过复杂的公式传递的,该公式缺乏解析的TT表示形式。为了以数值方式构造其TT近似值,我们开发了新的块TT交叉算法,该方法可通过对PCE公式的几次评估来计算整个TT分解。新方法在概念上类似于TT格式的自适应交叉逼近,但是当必须在同一TT表示中存储多个张量时,这种方法更为有效,PCE就是这种情况。另外,我们展示了如何组装随机的Galerkin矩阵并计算椭圆方程的解及其后处理,并且保持TT格式。我们将我们的技术与传统的稀疏多项式混沌和蒙特卡洛方法进行了比较。在张量积多项式混沌中,多项式度分别针对每个随机变量有界。这提供了比稀疏多项式集或蒙特卡洛方法更高的精度,但是张量积集的基数随随机变量的数量呈指数增长。但是,当PCE系数以TT格式隐式近似时,具有完整张量积多项式集的计算成为可能。在数值实验中,我们确认新方法在各种参数中具有竞争力,尤其是在需要高精度和高多项式度的情况下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号